A program director's perspective on recruitment and selection

Doug Bodin, Ph.D., ABPP

Disclosure statement

- Immediate past president of APPCN
- APPCN member program director

Matching Markets

Al Roth: "Matching markets are markets where you can't just choose what you want, you also have to be chosen"

Who Gets What: The New Economics of Matchmaking and Market Design <u>Stanford Graduate School of Business</u> :

https://www.youtube.com/watch?v=kj2fpM57Z7A

Matching Markets

- Jobs
 Marriage Decentralized
 Medical residency
 Psychology internships
 Public School choice
 Kidney exchange
 - Neuropsychology Postdoctoral Programs?

???

Market Selection

- Decentralized
 - •Open Market
 - •No rules regarding offers and acceptances
- Centralized
 - Rules for making and accepting offers
 - •Varying degrees of "closed system"

Market Selection

Decentralized

Freedom Negotiation Creeping offers Exploding offers Bottlenecks "Unraveling"

Centralized Rules Agreed timeline Better behavior Perceived less stress Consider all alternatives Restrictive Sense of uncertainty Need full participation

Centralized approaches

- Uniform notification dates (UND)
 - •Stressful
 - •Subject rule breaking
- Shared Calendar
 - •Creeping offers and bottlenecks
 - •Attempts to "game" the system
- Computer match
 - •An imperfect solution?

How does the match work?

- **Deferred acceptance algorithm** Alvin E. Roth (http://www.nber.org/papers/w13225) An outcome of the game is a matching: $\mu: M \cup W \not\in M \cup W$ such that $w = \mu(m)$ if and only if $\mu(w)=m$, and for all m and w either $\mu(w)$ is in M or $\mu(w) = w$, and either $\mu(m)$ is in W or $\mu(m) = m$. That is, an outcome matches agents on one side to agents on the other side, or to themselves, and if w is matched to m, then m is matched to w. A matching μ is blocked by an individual k if k prefers being single to being matched with $\mu(k)$, i.e. $k > k \mu(k)$. A matching μ is blocked by a pair of agents (m,w) if they each prefer each other to the partner they receive at μ , i.e. $w > m \mu(m)$ and $m > w \mu(w)$. A matching μ is stable if it isn't blocked by any individual or pair of agents.
- For the psychologists in the room: https://www.natmatch.com/appcnmat/aboutalg.html

Why the Computer Match?

- Applicants and programs can consider all of their options
- Rules **prohibit pressure** on applicants **or** programs to make a premature decision
- Match is based on the **true and actual preferences** of applicants and programs
- Produces **stable matches**: no applicant and program not matched with each other prefer each other to their assigned matches

Conclusion

What's best for the shared community and our specialty?
Better matches = better training = better future

