A program director’s perspective on recruitment and selection

Doug Bodin, Ph.D., ABPP
Disclosure statement

• Immediate past president of APPCN
• APPCN member program director
Matching Markets

Al Roth: “Matching markets are markets where you can’t just choose what you want, you also have to be chosen”

Who Gets What: The New Economics of Matchmaking and Market Design
Stanford Graduate School of Business:

https://www.youtube.com/watch?v=kj2fpM57Z7A
Matching Markets

- Jobs
- Marriage
- Medical residency
- Psychology internships
- Public School choice
- Kidney exchange
- Neuropsychology Postdoctoral Programs?

Decentralized

Centralized

???
Market Selection

• Decentralized
 • Open Market
 • No rules regarding offers and acceptances

• Centralized
 • Rules for making and accepting offers
 • Varying degrees of “closed system”
Market Selection

<table>
<thead>
<tr>
<th>Decentralized</th>
<th>Centralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom</td>
<td>Rules</td>
</tr>
<tr>
<td>Negotiation</td>
<td>Agreed timeline</td>
</tr>
<tr>
<td>Creeping offers</td>
<td>Better behavior</td>
</tr>
<tr>
<td>Exploding offers</td>
<td>Perceived less stress</td>
</tr>
<tr>
<td>Bottlenecks</td>
<td>Consider all alternatives</td>
</tr>
<tr>
<td>“Unraveling”</td>
<td>Restrictive</td>
</tr>
<tr>
<td></td>
<td>Sense of uncertainty</td>
</tr>
<tr>
<td></td>
<td>Need full participation</td>
</tr>
</tbody>
</table>
Centralized approaches

• Uniform notification dates (UND)
 • Stressful
 • Subject rule breaking

• Shared Calendar
 • Creeping offers and bottlenecks
 • Attempts to “game” the system

• Computer match
 • An imperfect solution?
How does the match work?

- **Deferred acceptance algorithm** Alvin E. Roth (http://www.nber.org/papers/w13225)
 An outcome of the game is a matching: \(\mu : M \cup W \rightarrow M \cup W \) such that \(w = \mu(m) \) if and only if \(\mu(w) = m \), and for all \(m \) and \(w \) either \(\mu(w) \) is in \(M \) or \(\mu(w) = w \), and either \(\mu(m) \) is in \(W \) or \(\mu(m) = m \). That is, an outcome matches agents on one side to agents on the other side, or to themselves, and if \(w \) is matched to \(m \), then \(m \) is matched to \(w \). A matching \(\mu \) is blocked by an individual \(k \) if \(k \) prefers being single to being matched with \(\mu(k) \), i.e. \(k > k \mu(k) \). A matching \(\mu \) is blocked by a pair of agents \((m,w)\) if they each prefer each other to the partner they receive at \(\mu \), i.e. \(w > m \mu(m) \) and \(m > w \mu(w) \). A matching \(\mu \) is stable if it isn't blocked by any individual or pair of agents.

- For the psychologists in the room:
 https://www.natmatch.com/appcnmat/aboutalg.html
Why the Computer Match?

• Applicants and programs can consider all of their options
• Rules prohibit pressure on applicants or programs to make a premature decision
• Match is based on the true and actual preferences of applicants and programs
• Produces stable matches: no applicant and program not matched with each other prefer each other to their assigned matches
Conclusion

• What’s best for the shared community and our specialty?
 • Better matches = better training = better future