Implementing Digital Technologies in Neuropsychological Evaluations: Challenges and Opportunities

Shifali Singh, Ph.D. Clinical Neuropsychologist, Director of Digital Neuropsychology and Brain Health, Asst Professor Department of Psychiatry McLean Hospital, Harvard Medical School

1

2

Disclosures

- Grant/Research Support: NIH; IBM, Corp., Johns Hopkins Artificial Intelligence and Technology Collaboratory (JH AITC)
- Venture Partner: Aphelion Capital
 I have received salary from Aphelion Capital for employment, consulting, and investing activities
- Consultant: Teijin Pharmaceuticals

Mass General Brig

The "cychlop"	Cannot be readily updated (e.g., using software updates)
	Must wait for a new version to include updated norms
with older tests	Heavily reliant on test-development companies (e.g., Pearson, PAR)
	Does not account for increasingly diverse population

Poll

 What are some of the biggest challenges you've encountered when administering neuropsychological and/or psychological tests?

7

8

My work in Digital Neuropsychology fills gaps in traditional testing by **leveraging digital technologies** towards *improving our ability to characterize cognitive and psychological functioning* in a way that is more ecologically valid.

> Mass General Brig McLean

This is not using technology for the sake of using technology...

Mass General

28

🔟 Mass General Brigham

Transforming Cognitive & Emotional Health Assessment with Digital Tools and Stepped Care

Sara L. Weisenbach, Ph.D., ABPP, Chief of Neuropsychology, McLean Hospital, Associate Professor, Harvard Medical School Director, Mood and Cognition in Aging Lab

1

Disclosures

ADHD Expert Advisory Board Member: Qbtech©

Member, Otsuka Apathy in Late Life Depression Advisory Board

Funding: NIH, Brain & Behavior Research Foundation

<u>छ</u> 🖗

Objectives

- Describe the history of stepped-care models for managing mental health
- Depict examples of emotional and cognitive health assessment in stepped-care
- Illustrate examples of how emerging markers of cognitive and emotional health can be used as part of stepped care in neuropsychology
- Blueprint a roadmap forward

💼 🖁

4

Current Uses of Digital Health Tools in Neuropsychology

- Digitized existing paper-and-pencil measures
 Automated scoring software
 Computerized continuous performance tests

- Digital cognitive screening measures and batteries (e.g., TabCAT, CNS Vital Signs, ImPACT, CANTAB, ANAM), some of which are web-based Use of REDCap or similar software to collect intake and survey data
- Entry of cognitive test scores into a clinic database
 Tele/virtual neuropsychology

💼 🛡

						R Check for upo	datas		 For every 30 minutes
Pred olde mon	licting da r adults nentary a	ily cogni using sm issessmei	ition and art home nt	lifestyle e data ar	behavio id ecolog	rs for Jical			spent outside the hom there was an increase
Maure	en Schmitte	r-Edgecomb	e" 💿, Cathe	rine Luna* (Shenghai	Dañ 💿			self-renorted social
and D	Diane J. Cool	ć 💿							sen reported social,
*Departs	ment of Psyche	ology, Washingt	ton State Unive	ersity, Pullman,	WA, USA; *Co	liege of Educar	tion,		physical, and cognitive
Washing	aton State Univ	ersity, Pullman, ersity, Pullman,	WA, USA: ISONO	of or Dectrical I	ing meeting and	Computer scie	ince,		p.,,,
									engagement
Table 4	4. Rank ord	ering of fea	atures for e	cological m	omentary a	ssessment	(EMA) surve	y questions	engagement
Table 4 and <i>n</i> -l	 Rank ord back task. 	ering of fea	atures for e	cological m	omentary a	ssessment	(EMA) surve	ry questions	engagement For every 1000 sensor
Table 4 and n-l	4. Rank ord back task.	ering of fea	atures for en	cological m M survey qu	omentary a	ssessment i back	(EMA) surve	ry questions	 engagement For every 1000 sensor
Table 4 and n-l Feature Order	 Rank ord back task. Sharp 	ering of fea	atures for en EN Physical	cological m M survey qu Cognitive	omentary a estion and <i>n</i> - Fatigue	ssessment back Mood	(EMA) surve	ry questions	engagementFor every 1000 sensor counts (i.e., movement
Table 4 and <i>n</i> -l Feature Order	4. Rank ord back task. Sharp Bedroom	ering of fea Social Outside	atures for en EN Physical Outside	cological m M survey qu Cognitive Count	omentary a estion and <i>n</i> - Fatigue Hour	back Mood Count	(EMA) surve Limited Bedroom	n-back Count	engagement • For every 1000 sensor counts (i.e., movemen self-reported mental
Table 4 and n-l Feature Order	4. Rank ord back task. Sharp Bedroom Count Rathease	Social Outside Count	Physical Outside Count Fitter	Cological m M survey qu Cognitive Count Outside	omentary a estion and <i>n</i> - Fatigue Hour Outside Redecem	back Mood Count Kitchen	(EMA) surve	n-back	engagement • For every 1000 sensor counts (i.e., movemen self-reported mental
Table 4 and n-I Feature Order	4. Rank ord back task. Sharp Bedroom Count Bathroom Outcide	Social Outside Count Hour Bathenorm	Physical Outside Count Kitchen Berfroom	cological m M survey qu Cognitive Count Outside Kitchen Berfroom	estion and n- Fatigue Hour Outside Bedroom Count	back Mood Count Kitchen Outside Bathmoom	(EMA) surve Limited Bedroom Bathroom Count	n-back Count Current Bedroom Ourside	 engagement For every 1000 sensor counts (i.e., movemen self-reported mental charpage, capial
Table 4 and n-I feature Order	4. Rank ord back task. Sharp Bedroom Count Bathroom Outside Hour	Social Outside Count Hour Bathroom Bedroom	EN Physical Outside Count Kitchen Bedroom Bathroom	cological m M survey qu Cognitive Count Outside Kitchen Bedroom Bathroom	estion and n- Fatigue Hour Outside Bedroom Count Kitchen	back Mood Count Kitchen Outside Bathroom Bedroom	(EMA) surve Limited Bedroom Bathroom Count Outside Kitchen	n-back Count Current Bedroom Outside Kitchen	 engagement For every 1000 sensor counts (i.e., movemen self-reported mental sharpness, social,
Table 4 and n-l feature Order 1 2 3 4 5 5	4. Rank ord back task. Sharp Bedroom Count Bathroom Outside Hour Kitchen	Social Outside Count Hour Bathroom Bedroom Kitchen	EM Physical Outside Count Kitchen Bedroom Bathroom Hour	cological m MA survey qu Cognitive Count Outside Kitchen Bedroom Hour	estion and n- Fatigue Hour Outside Bedroom Count Kitchen Bathroom	back Mood Count Kitchen Outside Bathroom Bedroom Hour	(EMA) surve Limited Bedroom Bathroom Count Outside Kitchen Hour	n-back Count Current Bedroom Outside Kitchen Bathroom	 engagement For every 1000 sensor counts (i.e., movemen self-reported mental sharpness, social,
Table 4 and n-l Feature Order 1 2 3 4 5 5 7	4. Rank ord back task. Sharp Bedroom Count Bathroom Outside Hour Kitchen Day	Social Outside Count Hour Bathroom Kitchen Day	EM Physical Outside Count Kitchen Bedroom Bathroom Hour Current	cological m Cognitive Count Outside Kitchen Bedroom Hour Current	estion and n- Fatigue Hour Outside Bedroom Count Kitchen Bathroom Day	back Mood Count Kitchen Outside Bathroom Bedroom Hour Current	(EMA) surve Limited Bedroom Bathroom Count Outside Kitchen Hour Current	n-back Count Current Bedroom Outside Kitchen Bathroom Hour	 engagement For every 1000 sensor counts (i.e., movemen self-reported mental sharpness, social, physical and cognitive

17

Challenges and Ethical Issues Related to DHTs and AI

- Digital securityInformed consent
- Adaptations to test administration and testing the limits
- Availability of high-quality normative data in diverse patient and nonpatient samples
- Construct validity of newer methods and tests with current practices · Verification of the identity of the test taker
- Test security
- Assessment of validity of data gathered
 Sharing of devices
- · Hardware and software limitations

🗊 🖁 Bider & Reise, 2019; Miller & Barr, 2017; Parsons, McMahan, & Kane, 2018

Roadmap Blueprint

- Aggregation of data in diverse samples against which novel assessment methods can be validated
- Knowledge dissemination beginning at the undergraduate level
- Modern psychometrics
 Health informatics
- Strategic partnerships between academic research groups, federal funding agencies, Strategic partieships between academic research groups, rederar hundriand industry/start-ups
 Continued advocacy for adequate reimbursement at every step of care
 Consideration and decision-making around emerging ethical issues
 Implementation that promotes health equity and avoidance of bias

💼 🕅

Acknowledgements

SCN Neurotechnology Working Group Rus Bauer, Ph.D. Bob Bilder, Ph.D. Maggie Lance, Ph.D. Sophie Leib, Ph.D. Travis Marchman, B.A. Maureen Schmitter-Edgecombe, Ph.D. Shifali Singh, Ph.D.

External Collaborators ADHD Expert Advisory Board-Qbtech® Megan Armstrong, M.S. Jack Kaufman, M.A. Joseph Kim, Ph.D. Vincent Koppelmans, Ph.D. Martin Sliwenski, Ph.D. <u>छ</u>

22

McLean Hospital Allison Gregg, Ph.D. Jeremy Maciarz, M.S. Regan Patrick, Ph.D. Boyu Ren, Ph.D. Shifali Singh, Ph.D. Ipsit Vahia, M.D. Loreal Williams, B.A.\

F<u>undine</u> NIH R01 MH116033 McLean Hospital Sundry Fund

22

ALZHEIMER'S DISEASE

Snoradic AD; 90-95% of cases "Generally diagnosed in individuals over the age of 65. "The most important risk factors-age, family history and heredity (APOE4, the major genetic risk factor).

Eamilial AD.; <2% of cases *Autosomal-dominant mutations: Presenilin I and 2,Amyloid precursor protein (APP) genes *Before the age of 65 *Nearly 100% penetrance *Specific age of onset

REMOTE AND UNSUPERVISED ASSESSMENTS FOR DETECTION OF COGNITIVE IMPAIRMENT

14

	RESULTS: LAS-FNAME				
	Noncarriers n=48	Cognitively- intact Carriers n=35		Symptomatic Carriers n = 19	
LAS-FNAME	M (SD)	M (SD)	p^{a}	M (SD)	p^{b}
IM Total	26.42 (4.19)	24.34 (4.66)	.037*	20.68 (4.40)	.001*
DM Total	27.14 (4.88)	25.06 (4.93)	.059	20.79 (4.43)	.003*
	53 56 (8 76)	49.40 (9.26)	.040*	41.47 (8.32)	.001*

	Non- Carrier (n=26)	Cognitively Unimpaired PSENI E280A Carrier (n=35)	PSEN / E280A Carrier with MCI due to ADAD (n=5)	P-value:
MESERO Total Score (out of 80)	73.46 (5.67)	70.77 (6.51)	64.60 (8.68)	p=.04
MESERO Related Trials Sub-Score (out of 40)	35.77 (2.89)	33.91 (4.15)	31.60 (5.27)	р=.04
MESERO Unrelated Trials Sub-Score (out of 40)	37.69 (3.31)	36.85 (3.48)	33.00 (3.53)	р=.15
4-Item Object Load Score (out of 40)	37.31 (3.18)	35.54 (4.19)	32.40 (5.32)	p=.02
6-Item Object Load Score (out of 40)	36.15 (2.69)	35.23 (3.04)	32.20 (3.42)	p=.19

25	Nea-Carriers	PSENT 1286A Carriers.	Test Statistic	a-salar	Ellert S
	n = 31 ²	n = 19 ⁴			
Age	36.97 (6.11)	2547 (5.50)	1.94	0.00	0.3
Education	11.45(4.)40	10.601(0.61)	0.40	83	1.0
Sev			1.58*	9.21	
Female/Male	29/11	6/9			
MME	29.06 (1.00)	26.47 (0.92)	1.94	0.06	0.8
CERAD Last Recall	7.41 (1.42)	2000.01.003	\$36	0.2	6.3
Total Placement Score	0.74 (0.27)	0.04 (0.20)	241.2	3.61	0.0
Innerdate Object Placement Acouticy	0.52 (0.20)	0.54 (0.20)	294.5	0.00	0.00
Immediate Object Recognition	0.46 (0.14)	661(0.10)	141.01	2.05	6.2
Instantiate Metamonety Score	0.37 81,540	842 (0.11)	210.07	0.65	0.12
Deleyed Object Placement Accuracy	0.37 (0.24)	0.05 (0.20)	225.5	0.87	0.03
Delayed Bassa Recognition Accuracy	0.99 all 255	-6.09 (0.11)	168.0*	0.02*	0.38
Delayed Metamentory Score	0.47 (0.20)	661.0.23	197.01	0.38	-0.1
				and shares	

CONCLUSION

Findings across studies consistently demonstrate that the LAS-FNAME, along with the newly developed MESERO and MAPP Room Memory Test, effectively distinguish cognitively unimpaired carriers from non-carriers.

29

BOSTON LATINO AGING STUDY

 Cultural factors — together with socioenvironmental factors — should be integrated into dementia research (from recruitment/retention strategies to design and implementation of clinical studies).

 The goal of BLAST is to investigate the impact of various AD risk factors on cognition, brain function and molecular markers of AD pathology in individuals older than 55yo.

34

MULTICULTURAL RESILIENT BRAIN

- Memory declines as people age, but this is not inevitable.
- Individuals who maintain cognitive function despite high levels of AD-related pathology are said to be 'resilient' to dementia.
- Several factors have been associated with protection and resilience, but our understanding of which factors are causal or simply correlated with resilience is still limited. *Our knowledge of resilience in diverse* samples is very limited.
- The goal Identifying mechanisms underlying resilience represents an exciting opportunity for prevention and treatments!

35

PARTICIPANTS					
ĺ	Total (N = 54)	Female (n = 35)	Male (n = 19)		
	M (SD)	M (SD)	M (SD)		
AGE	64.57 (8.05)	65.40 (7.72)	63.05 (8.62)		
EDUCATION	15.41 (3.59)	14.77 (3.40)	16.58 (3.72)		
LAS FNAME IM TOTAL	24.94 (4.90)	24.83 (4.48)	25.16 (5.72)		
LAS-FNAME DM TOTAL	25.39 (5.16)	25.49 (5.14)	25.21 (5.34)		
LAS FNAME Total	50.33 (9.54)	50.31 (9.06)	50.37 (10.64)		

LAS-FNAME, MESERO & THE ROOMTEST detect cognitive decline in individuals at risk for autosomal domirant Alzheimer's disease. Performance on LAS-FNAME is linked to elevated amyloid and tau levels in asymptomatic individuals. Recently shown to differentiate individuals with MCI from controls in Argentina (Keller et al., 2024). Preliminary findings suggest that LAS-FNAME, MESERO & THE ROOM TEST may be sensitive memory measures across heterogenous Hispanic/Latino older adults residing in the US.

41

M (SD) 62.80 (8.67) 15.02 (3.66) 0.43 (0.17)	M (SD) 63.15 (8.65) 14.39 (3.43) 0.42 (0.17)	M (SD) 62.05 (8.91) 16.37 (3.87)
62.80 (8.67) 15.02 (3.66) 0.43 (0.17)	63.15 (8.65) 14.39 (3.43) 0.42 (0.17)	62.05 (8.91) 16.37 (3.87)
15.02 (3.66) 0.43 (0.17)	14.39 (3.43) 0.42 (0.17)	16.37 (3.87)
0.43 (0.17)	0.42 (0.17)	
		0.46 (0.18)
0.59 (0.12)	0.60 (0.12)	0.57 (0.11)
0.51 (0.17)	0.52 (0.16)	0.48 (0.18)
0.54 (0.26)	0.56 (0.22)	0.49 (0.33)
0.94 (0.15)	0.98 (0.11)	0.88 (0.21)
0.61 (0.20)	0.61 (0.19)	0.61 (0.23)
7.05 (2.62)	7 (2.44)	7.16 (3.04)
	MORY TES	r
	0.51 (0.17) 0.54 (0.26) 0.54 (0.15) 0.61 (0.20) 7.05 (2.62)	0.51 (0.17) 0.52 (0.16) 0.54 (0.26) 0.55 (0.22) 0.94 (0.15) 0.54 (0.19) 7.05 (2.42) 7 (2.44)

We adapted the Face-Name Associative Memory Exam (FNAME) to Latin American Spanish (LAS-FNAME).

Supp (Clat

Disclosures	
Health Care Delivery and Implementation Science Center	
American Academy of Clinical Neuropsychology Foundation	
American Psychological Association Advisor to the American Medical Association/Specialty Society RVS Update Committee	
Cleveland Clinic	

Objectives
1) Develop new knowledge of the feasibility and reliability, of tele- neuropsychological testing in different clinical populations
 Develop knowledge of the feasibility, reliability, and diagnostic validity of in-home tele-neuropsychological testing in Parkinson's disease
3) Develop knowledge of healthcare policy and advocacy efforts related to tele-neuropsychology
Cleveland Clinic

Indirect Healthcare Costs Transportation costs Losses in income Losses in work and personal leave time Child and/or elder care costs Costs are extended to care partners Cteveland Clinic

7

õ

Tele-Neuropsychology: The Science

Counter-bala	nced: In-home	, Healthy		
COMD-19 Articles Feasibility of home-based 1 Susan Mahon C , James Wi Page: 558-570 [Received 14 Jan 2022	administering elehealth video bb ©, Deborah Snell © & Alice Ti .Accepted 21 Sp 2021, Published online:	the WAIS-IV	using a g model	
Teleneuropsyco María Guadalupe Gon OnlineFirst https://	blogical adaptation of	the NEUROPSI Br eria Medina-Rivera ⁽³⁾ , and 123412	eve screening te	st ©
An evaluar virtual neu Carl R. Krynicki First published: 2	tion of the conver uropsychological a • , David Hacker •, Christ 28 November 2022 https:/	gent validity of assessment cou copher A. Jones ~ //doi.org/10.1111/jnp.12	f a face-to-face unter balanced	e and d

Non-Counter-balanced: In-home, Cli	inical
1.4 to the execution desc. 2021 the (2020) 103-264. And 10.1017/1010401722000777. And 1022 Des 1.3 Concurrent validity and reliability of at-home teleneuropsychological evaluations among people with an divitiout HIV student without HIV students $P_{\rm c}$ that before 2 , due to the 2 , but the theory 2 , but the to the to the 2 , but the to the 2 , but the to the to the 2 .	1 Jet Norspechd Se. 2014 Dec3/104/984-986. doi:10.1117/131984772409482. https://doi.org/10.1016/j.j.soff.com/2014/0000000000000000000000000000000000

Counter-balanced	l: In-home, Clinical		
	Nearopsychology		
Agreement, Reliability, Feasibi Telehealth Versus Face-to-Face A Within-Per	lity, and Acceptability of Home-Based Pediatric Neuropsychological Testing: son Crossover Study		
Kristina M, Haebich ^{1,7} , Hayley Darke ¹ , Fra Alex Ure ^{3,4,5} , Natasha L, Hogan ¹ , Yu Fan Ing ¹ , Nicki Joshua ⁶ , Gabriel D Vicki A, Anderson ¹	cesca Lami ^{1,2} , Alice Maiee ^{1,2} , Anita K. Chisholm ^{1,2,3} , Jacquie Wermall ¹ , Stophen J. C. Heorps ¹ , Davit Effon ^{1,2,3} , abscheck ^{1,2,3} , Kathryn N. Nondh ^{1,2} , ¹ ^{1,2} , and Jonuben M. Pome ^{1,2,3}		
Home-Based Peo	liatric Teleneuropsycholo	gy: A validation study	
Lana Harder ^{1,2,3,*} , An C	a Hernandez ¹ , Cole Hague ⁴ , Joy Ne . Munro Cullum ^{2,3,5} , Benjamin Gre	eumann ^{1,2} , Morgan McCreary ³ , eenberg ^{3,6}	
Remote Assess Controls: A Pilo	ment of Pediatric Patients v ot Study of Feasibility and R	with Daytime Sleepiness an eliability	nd Healthy
Jennifer Worhach, M.	A, ¹ Madeline Boduch, BS, ¹ Bo Zhang,	PhD,1,2 and Kiran Maski, MD, MPH1	

Between Group	Differen	ces at Bas	seline
	Baseline In-person (N=41)	Baseline Tele-npt (N=36)	p-value
Memory			
WMS-3: Logical Memory I	38.6 (7.9)	39.7 (8.8)	0.63
WMS-3: Logical Memory II	24.1 (7.8)	23.3 (6.5)	0.56
HVLT-R Total Recall	23.9 (5.8)	24.3 (3.3)	0.48
HVLT-R Delayed Recall Total	8.5 (3.0)	8.2 (2.9)	0.93
NAB Shape Learning: Immediate Recognition	16.6 (3.1)	15.7 (2.9)	0.39
NAB Shape Learning: Delayed Recognition	5.9 (1.3)	5.0 (1.6)	0.029
	Baseline In-person (N=41)	Baseline Tele-npt (N=36)	p-value
Executive Functioning			
WCST Total Errors	31.2 (24.7)	39.0 (26.8)	0.44
D-KEFS: Letter Fluency	45.0 (12.9)	41.6 (10.9)	0.61
D-KEFS: Category Switching: Total Correct Responses	13.5 (3.1)	15.0 (2.7)	0.023
WAIS-IV: Matrix Reasoning	17.9 (4.9)	17.8 (4.9)	0.29
D-KEFS: Inhibition	66.6 (26.6)	68.9 (18.6)	0.81
D-KEFS: Inhibition/Switching	78.4 (35.6)	73.5 (20.4)	0.18

Retween Grour	Differen	ces at Bas	eline
Detween Group	Dilicicii		
	Baseline In-person (N=41)	Baseline Tele-npt (N=36)	p-value
Performance Validity, Premorbid Functioning, and Cognitive Screening			
Dot Counting E-Score	11.2 (3.5)	13.7 (2.9)	0.013
TOPF	53.5 (10.8)	50.4 (14.1)	0.85
MoCA	25.4 (2.3)	26.5 (2.5)	0.004
	Baseline In-person (N=41)	Baseline Tele-npt (N=36)	p-value
Attention, Working Memory, & Processing Speed			
WAIS-IV Digit Span: Total	29.2 (4.7)	28.2 (5.5)	0.74
WMS-3: Letter-Number Sequencing	10.0 (2.7)	9.9 (2.6)	0.62
D-KEFS: Color Naming	33.1 (6.8)	37.5 (7.4)	0.009
D-KEFS: Word Reading	24.8 (5.0)	30.1 (9.7)	0.005
000 m o 1	48.8 (10.4)	41.3 (10.9)	0.003

Frequency and percentage of participants exceeding the SRB change threshold Repeated in- proving (N-23) Tel-septin-person (N-16) Tel-septin-person (N-16) p-x TOPF 2 (9.52) II (6).11) 9 (45.00) 4 (42.22) 0.00 DAERS: Word Reading 2 (9.52) 3 (16.67) (10.00) 0.00 0.00 0.00 DAERS: Word Reading 2 (9.52) 3 (16.67) 0 (0.00) 0.00 DAERS: Word Reading 2 (9.52) 3 (16.67) Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" DAERS: Word Reading 2 (9.52) 3 (16.67) Colspan="2" DAERS: Word Reading 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) 2 (9.52) <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" th=""><th>rson p-value 0.003** 0.037* 0.015</th></th>	<th>rson p-value 0.003** 0.037* 0.015</th>		rson p-value 0.003** 0.037* 0.015
Frequency and percentage of participants exceeding the SRB change threshold Repeated in- provement previow Telengtin-previow P* TOPF 2 (9-32) 11 (6/11) 9 (9-32) 0,000 0,000 P* TOPF 2 (9-32) 11 (6/11) 9 (9-32) 0,000	rson p-value 0.003 ^{x,b} 0.037 ^c 0.015		
TOPF 2 (9.52) 11 (61.11) 9 (45.00) 4 (22.22) 0,0 DAEES: Word Reading 2 (9.52) 3 (16.67) 2 (10.00) 8 (44.44) 0.0 DAEES: Letter Fluency 2 (9.52) 3 (22.22) 7 (35.00) 0 (0.00) 0.0 DAEES: Letter Fluency 2 (9.52) 3 (16.67) 6 (30.00) 0 (0.00) 0.0 DAEES: Minimin 2 (9.52) 3 (16.67) 6 (30.00) 0 (0.00) 0.0	0.003 ^{4,b} 0.037 ^c 0.015		
DxETS:: Nived Reading 2 (9.52) 3 (16.67) 2 (10.00) 8 (44.4) 0.0 DxEES: Linter Fluency 2 (9.52) 4 (22.22) 7 (35.00) 0 (0.00) 0.0 DxETS: Linking 2 (9.52) 3 (16.67) 6 (30.00) 0 (0.00) 0.0	0.037 ^c 0.015		
D-KEFS: Letter Fluency 2 (9.52) 4 (22.22) 7 (35.00) 0 (0.00) 0.0 D-KEFS: Inhibition 2 (9.52) 3 (16.67) 6 (30.00) 0 (0.00) 0.0	0.015		
D-KEFS: Inhibition 2 (9.52) 3 (16.67) 6 (30.00) 0 (0.00) 0.0			
	0.049		
WMS-3: Logical Memory II 0 (0.00) 8 (44.44) 5 (25.00) 2 (11.11) 0.00	0.0024.0		
NAB Shape Learning: Immediate Recognition 1 (4.76) 1 (5.56) 9 (45.00) 3 (16.67) 0.0	0.004 ^e		
Judgement of Line Orientation 3 (14.29) 9 (50.00) 7 (35.00) 2 (11.11) 0.0	0.026"		

Diagnostic Validity Cognitively impaired patients based on neuropsychological tests z-score <---1 as impairment Cognitively N Cognitively Impaired P-value Cognitively Impaired Impair 1.5 as z-score < Cognitively Impaired -2 as impairment p-value 0.47^a p-value 0.18^a Baseline In-person Tele-npt Week 4 In-person Tele-npt 21 (51.2) 26 (68.4) 13 (31.7) 15 (39.5) 5 (12.2) 9 (23.7) 41 38 0.087ª 0.12^a 0.26^b 13 (33.3) 20 (52.6) 9 (23.1) 15 (39.5) 2 (5.1) 5 (13.2) 39 38 Cleveland Clinic

37

		D	iagno	stic Vali	dity		
Agreement of cognitiv	ve dia	gnosis groups b z-score <=-1 as imp	etween Basel airment	ine and Week 4 z-score <=-1.5 as in	pairment	z-score <=-2 as imp	airment
	Ν	Agreement	p-value	Agreement	p-value	Agreement	p-value
Overall	77	57 (74.0)		59 (76.6)		62 (80.5)	
By testing groups			0.10		0.77		0.44
Repeated in-person npt	21	17 (81.0)		17 (81.0)		19 (90.5)	
Repeated in-home tele-npt	18	11 (61.1)		14 (77.8)		13 (72.2)	
In-person/tele-npt	20	18 (90.0)		16 (80.0)		15 (75.0)	
tele-npt/in-person	18	11 (61.1)		12 (66.7)		15 (83.3)	

Acceptability
Very easy/easy to use technology (89%)
Very satisfied/satisfied (90% in-person; 89% tele-npt)
Comfortable recommending services (93% in-person; 92% tele-npt)
Accurately reflected abilities (80% in-person; 72% tele-npt)
Cleveland Clinic

